
A comparison of two databases in terms of scale, data
model, insert performance, and query performance

Benchmarking TimescaleDB
vs. MongoDB for Time-Series Data

Overview� 3

MongoDB methods� 4

Write performance & disk usage� 6

Query performance� 8

Query language comparison� 11

Summary� 13

Next steps � 14

Benchmarking TimescaleDB vs. MongoDB 3

Overview

Time-series data is popping up in many places: DevOps and monitoring, industrial manufacturing,

financial trading and risk management, sensor data, ad tech, application eventing, smart home,

autonomous vehicles, and more. Since the data piles up very quickly, the biggest challenge with

storing time-series is scale. While we’ve done research to prove that SQL is definitely scalable, a lot of

people’s’ first thoughts go to NoSQL (i.e., non-relational databases) when they want to scale.

Enter MongoDB. MongoDB is among the best known NoSQL solutions, emerging at the end of the last

decade to become the face of NoSQL and the foundation of a multibillion-dollar company. Initially

used as a simple document store for web apps to prototype quickly and scale easily, its proponents

now boast its usefulness across a variety of domains, including time-series.

However, is it really the right solution for time-series data? We decided to evaluate for ourselves

to answer that question, even trying multiple methods to make sure we were fair to MongoDB. We

found that users get 20% higher insert performance, up to 1400x faster queries, and simpler queries

when using TimescaleDB vs. MongoDB for time-series data. While MongoDB’s JSON-like document

store may make it a jack-of-all-trades type of database, and perhaps a master of some (e.g., web

applications), time-series is not one of them.

Methodology

We evaluated two methods of using MongoDB 3.6 as a time series database: (1) a naive, document-

per-event method and (2) a method recommended by MongoDB users (and MongoDB itself) that

aggregates events into hourly documents. The first method has fast writes and is extremely simple to

implement, but offers poor query performance and disk space usage.

The second method achieves good query performance on simple queries, but has worse write

performance, higher implementation complexity, and fails to deliver good query performance on

more complex time-series queries when compared to TimescaleDB.

Benchmarking TimescaleDB vs. MongoDB 4

More specifically, compared to MongoDB, TimescaleDB exhibits:

•	 Comparable (method 1) to 20% better (method 2) write performance.

•	 Faster queries, often ranging from 5x to even 1,400x improvements.

•	 Far simpler implementation, especially when compared to method 2.

MongoDB methods

Before diving into write and read performance numbers, let’s take a moment to examine in more

detail the two methods we evaluated for storing time-series data in MongoDB.

Method 1: Document per event (aka “Mongo-naive”)

As mentioned, we tested two methods for storing time series data in MongoDB. The first, which we’ll

refer to as “Mongo-naive,” is straightforward: each time-series reading is stored as a document. So for

our given use case (see setup below) of monitoring CPU metrics, the JSON document looks like this:

{
 “measurement” : “cpu”,
 “timestamp_ns” : NumberLong(“1451606420000000000”),
 “fields” : {
 “usage_user” : 98.15664166391042,
 “usage_guest_nice” : 85.53066998716453,
 …
 },
 “tags” : {
 “hostname” : “host_2019”,
 “datacenter” : “us-east-1b”,
 …
 }

}

Conceptually and in implementation, this method is very simple, so it seems like a tempting route

to go: batch all measurements that occur at the same time into one document along with their

associated tags, and store them as one document. Indeed, this approach yields very good write

performance (and in our tests, noticeably higher than others have reported), and it is easy to

implement. However, we’ll see later that, even with indexes, the query performance with this method

leaves a lot to be desired. Further, this method eats up disk space, using up nearly 50% more than

method 2.

https://www.influxdata.com/blog/influxdb-is-27x-faster-vs-mongodb-for-time-series-workloads/

Benchmarking TimescaleDB vs. MongoDB 5

Method 2: Aggregate readings hourly per device (aka “Mongo-recommended”)

This second method is one that MongoDB itself (and other blogs) recommends — and therefore we

call “Mongo-recommended” — when it comes to time series. The idea is to create a document for each

device, for each hour, which contains a 60 by 60 matrix representing every second of every minute in

that hour. This document is then updated each time a new reading comes in, rather than doing a new

document insert:

{
 “measurement” : “cpu”,
 “doc_id” : “host_15_20160101_00”, // for quick update lookup
 “key_id” : “20160101_00”, // YYYYMMDD_hh
 “tags” : {
 “hostname” : “host_6”,
 “datacenter” : “ap-southeast-1b”,

 },
 “events” : [
 [
 {
 “timestamp_ns” : NumberLong(“1451606420000000000”),
 “usage_user” : 98.15664166391042,
 “usage_guest_nice” : 85.53066998716453,
 ...
 },
 ... // (59 elements elided)
],
 ... // (59 elements elided)
]

}

This method does make it possible to do some efficient filtering when it comes to queries, but comes

with a more cumbersome implementation and decreased (albeit not terrible) write performance.

For example, to efficiently manage writes, a client-side cache of which documents are already made

needs to be kept so that a more costly “upsert” (i.e. insert if it doesn’t exist, otherwise update)

pattern is not needed.

Benchmarking TimescaleDB vs. MongoDB 6

Further, while queries for this method are typically more performant, designing the query in the first

place requires more effort, especially when reasoning about which aggregate documents can be

filtered/pruned.

Finally, this approach limits the granularity of your data. In particular, if you wanted to support

millisecond precision, you would have to change the design to aggregate on a minutely basis, as the

max document size in MongoDB (16MB) does not lend itself to further nesting. Beyond millisecond

precision is probably infeasible.

However, because the data in our evaluation was only at the granularity of seconds, and given the

query performance we measured, we ultimately decided that this method is probably the best

method for comparison against TimescaleDB. We include write performance numbers and some

query numbers for Mongo-naive to show how we reached that conclusion.

Write performance & disk usage

Because NoSQL databases typically trade off some guarantees of relational databases, most

engineers would expect MongoDB to achieve better write performance/throughput, making it an

inviting choice for ingesting time-series data, which can be at a rate of thousands of readings per

second.

While it’s true that plain PostgreSQL does tend to lose write throughput as the dataset size grows,

fortunately TimescaleDB’s chunking mechanism keeps write performance high. As a result, we find

that our write performance is actually comparable to MongoDB at its fastest (Mongo-naive), as shown

in the figure below. These insert numbers were achieved using 8 concurrent clients inserting data

into each setup.

Benchmarking TimescaleDB vs. MongoDB 7

The simplicity of Mongo-naive has it outperforming Mongo-recommended by over 20%,

but TimescaleDB is able to achieve similar performance (nearly 1M metrics per second).

All three setups are able to achieve write performance that makes them suitable for time-series data,

but Mongo-naive and TimescaleDB certainly stand a cut above. Mongo-recommended experiences

extra cost in having to occasionally make new larger documents (e.g., when a new hour or device is

encountered).

While Mongo-naive is indeed fast for writes, it suffers significantly when it comes to query

performance (as we’ll see below). Ultimately that poor performance makes it an impractical setup for

time-series data overall.

Mongo-naive also uses more disk space than either Mongo-

recommended or TimescaleDB for the full dataset:

Therefore, for MongoDB’s most practical setup (Mongo-

recommended), TimescaleDB achieves write performance

that is >20% over MongoDB.

Benchmarking TimescaleDB vs. MongoDB 8

Query performance

Before we compared MongoDB against TimescaleDB, we first considered the query performance

between the two MongoDB methods. By this point, Mongo-naive had demonstrated better write

performance with a simpler implementation at the cost of additional disk usage, but we suspected

that Mongo-recommended would outperform Mongo-naive for query performance. If there were a

clear winner between the two methods for MongoDB on simple queries, we could save ourselves

some time by not implementing our full query set against both methods.

We first compared the two MongoDB methods using 3 “single rollup” (groupby) queries (on time) and

one “double rollup” query (on time and device hostname). The three single rollup queries were run in

500 different permutations (i.e., with random time ranges and hosts) and the double rollup query was

run in 100 different permutations, from which we recorded the mean and standard deviation.

Here are the results:

Mongo-recommended out performs Mongo-naive by 2x-20x depending on the query Mongo-naive

does outperform Mongo-recommended on the shortest query (shaving a few milliseconds), but aside

from that, it is anywhere from 2x slower up to nearly 22x slower than Mongo-recommended.

Given this significant difference in query performance compared to the more modest different in write

performance (a loss of 20% for Mongo-recommended), we decided that the recommended approach

from MongoDB and others was indeed probably the best setup for time-series data. Thus, the

remainder of this post, we use the “Mongo-recommended” setup whenever benchmarking MongoDB.

Benchmarking TimescaleDB vs. MongoDB 9

Here is an overview of query performance:

Single rollups on time

The first set of queries that we will compare are the same first three we looked at when comparing

the two methods above:

The results (mean query latency) here are a bit mixed, with TimescaleDB performing better on one,

MongoDB performing better on another, and a third being pretty much a tie. All in all, the the raw

difference in milliseconds make most of these queries roughly equivalent in a practical sense.

Rollups on time and device

While single rollups are pretty comparable across the two systems, other more complex queries are

not. Turning back to the ‘double-groupby’ query used previously, where the rollup occurs on time

andon device name, we can see where TimescaleDB shows big gains.

In the table below, we show one metric being aggregated and also 10 metrics being aggregated.

TimescaleDB is between 4–6x faster than MongoDB in these cases. And now that the queries may

take 10s of seconds (rather than milliseconds), those kind of differences are very noticeable.

Benchmarking TimescaleDB vs. MongoDB 10

Last point per device & last N before time cutoff

Finally we look at two types of queries where TimescaleDB outperforms MongoDB by an ever wider

margin. The first is a query (‘lastpoint’) that finds the latest reading for every device in the dataset

(quite often seen in some use cases, e.g., IoT).

While our dataset has all devices reporting at consistent intervals, this query is troublesome in the

general case because it could be that some devices have not reported in quite a long time, potentially

causing a lot of documents (MongoDB) or rows (TimescaleDB) to be scanned.

We are able to do some clever query construction in both to get a list of distinct devices which allows

both setups to stop searching when every device has a point associated with it. We utilize JOINs in

both systems. However, while MongoDB does support JOINs, they are not the bread-and-butter that

they are for relational databases like TimescaleDB. Therefore, results were not good for MongoDB:

The second complex query we analyzed (‘groupby-orderby-limit’) does a single rollup on time to get the

MAX reading of a CPU metric on a per-minute basis for the last 5 intervals for which there are readings

before a specified end time. (This is the type of query one often sees in monitoring workloads.)

This is tricky because those last 5 intervals could be the 5 minutes prior to the end time, or if there is

no data for some minute periods (i.e., “gaps”) they could be spread out, potentially needing a search

from the beginning just to find all 5.

Benchmarking TimescaleDB vs. MongoDB 11

In fact, a full table scan was the query strategy needed for MongoDB, while TimescaleDB has

intelligent planning to utilize its indexes, causing a result massively in favor of TimescaleDB:

Query language comparison

We also compared the query language differences between TimescaleDB and MongoDB for that

last “groupby-orderby-limit” query. As we can see, not only is TimescaleDB much more performant,

but the query language (i.e., SQL) is also much simpler and easier to read (a crucial criteria for

sustainable software development):

TimescaleDB query (SQL):
SELECT date_trunc(‘minute’, time) AS minute, max(usage_user)
FROM cpu
WHERE time < ‘2016-01-01 19:47:52.646325 -7:00’
GROUP BY minute
ORDER BY minute DESC

LIMIT 5

Here’s that same query expressed in MongoDB:

MongoDB query:
[

 {

 $match: {

 measurement: “cpu”,

 key_id: {

 $in: [“20160101_00”, “20160101_01”, “20160101_02”, “20160101_03”, “20160101_04”, “20160101_05”, “20160101_06”,

“20160101_07”, “20160101_08”, “20160101_09”, “20160101_10”, “20160101_11”, “20160101_12”, “20160101_13”, “20160101_14”,

“20160101_15”, “20160101_16”, “20160101_17”, “20160101_18”, “20160101_19”, “20160101_20”, “20160101_21”, “20160101_22”,

“20160101_23”, “20160102_00”, “20160102_01”, “20160102_02”, “20160102_03”, “20160102_04”, “20160102_05”, “20160102_06”,

“20160102_07”, “20160102_08”, “20160102_09”, “20160102_10”, “20160102_11”, “20160102_12”, “20160102_13”, “20160102_14”,

“20160102_15”, “20160102_16”, “20160102_17”, “20160102_18”, “20160102_19”, “20160102_20”, “20160102_21”, “20160102_22”,

“20160102_23”, “20160103_00”, “20160103_01”, “20160103_02”, “20160103_03”, “20160103_04”, “20160103_05”, “20160103_06”,

“20160103_07”, “20160103_08”, “20160103_09”, “20160103_10”, “20160103_11”, “20160103_12”, “20160103_13”]

 }

 }

 },

Benchmarking TimescaleDB vs. MongoDB 12

 {

 $project: {

 _id: 0,

 key_id: 1,

 tags: “$tags.hostname”,

 events: 1

 }

 },

 {$unwind: “$events”},

 {

 $project: {

 key_id: 1,

 tags: 1,

 events: {

 $filter: {

 input: “$events”,

 as: “event”,

 cond: {

 $and: [

 {$gte: [“$$event.timestamp_ns”, 1451606400000000000]},

 {$lt: [“$$event.timestamp_ns”, 1451827606646325489]}

]

 }

 }

 }

 }

 },

 {$unwind:$events},

 {

 $project: {

 time_bucket: {

 $subtract: [

 “$events.timestamp_ns”,

 {$mod: [“$events.timestamp_ns”, 60000000000]}

]

 },

 field: “$events.usage_user”

 }

 },

 {

 $group: {

 _id: “$time_bucket”,

 max_value: {$max: “$field”}

 }

 },

 {$sort: {_id: -1}},

 {$limit: 5}

]

Two things that jump out besides the verbose JSON syntax:

•	 First, for efficiently stopping the query, the client running the query will have to compute the

subset of documents to look in, which creates the lengthy list in the first $match aggregator

below.

•	 Second, to unpack the 60x60 matrices in each document, the $unwind/$project/$unwind

pattern is needed to efficiently expand those matrices while removing empty time periods. This

pattern is actually needed for almost all of the queries we looked at here, which makes all the

queries verbose and potentially daunting to debug.

Benchmarking TimescaleDB vs. MongoDB 13

Summary

In conclusion, users get 20% higher insert performance, up to 1400x faster queries, and simpler

queries with TimescaleDB vs. MongoDB.

Is it surprising that a time-series database like TimescaleDB out-performs a general purpose

document store when it comes to time-series data? Not exactly, but there are enough blogs, talks,

and other material out there showing that people are using MongoDB for time-series data that we

thought we needed to do an evaluation.

Understandably, for many users, MongoDB seems to offer the benefit of ease-of-use and a quick

setup time. Yet, for time-series data, setting up MongoDB to actually be performant is not simple

and requires careful thought about your document design. If you just dump each reading into a new

document, you’re in for bad time when the data accumulates and you want to start querying it. If

you’re going to take the time to write all the client-side code for its recommended time-series method,

you’ve already done a lot more work than you would need to setup and start using TimescaleDB.

MongoDB may be a great non-relational document store, but it just isn’t that great for time-series

data. However, for time-series data with TimescaleDB, you get all the benefits of a reliable relational

database (i.e., PostgreSQL) with better performance than a popular NoSQL solution like MongoDB.

Based on our analysis, TimescaleDB is the clear choice.

Benchmarking TimescaleDB vs. MongoDB 14

Next steps

In this paper, we performed a detailed comparison of TimescaleDB and MongoDB for time-series

data. One of the worst mistakes a business can make is investing in a technology that will limit it in

the future, let alone be the wrong fit today. That’s why we encourage you to take a step back and

analyze your stack before you find your database infrastructure crumbling to the ground.

If you are ready to get started with TimescaleDB, follow the instructions below. If you have any

questions along the way, please contact us.

Additional resources

•	 Benchmark using the Time Series Benchmark Suite (TSBS)

•	 Follow our blog for database insights, engineering updates, tutorials, and more

Where to go from here...

•	 Install TimescaleDB

•	 Join the Slack channel

•	 Reach out to hello@timescale.com and let us know how we can help

http://github.com/timescale/tsbs
http://blog.timescale.com
https://docs.timescale.com/v0.12/getting-started/installation/mac/installation-homebrew
http://slack.timescale.com
mailto:hello%40timescale.com?subject=

