
How two time-series databases stack up in terms of
data model, query language, reliability, performance,
ecosystem and operational management

Benchmarking TimescaleDB
vs. InfluxDB for Time-Series Data

Overview 3

Data model 3
Relational data model

Tagset data model

Data model summary

Query language 6
Query language summary

Reliability 7
Reliability summary

Performance 9
Insert performance

Insert performance summary

Read latency

Read latency performance summary

Stability issues during benchmarking

Ecosystem 16
Ecosystem summary

Operational management 17
High availability

Resource consumption

General tooling

Next steps 19

Benchmarking TimescaleDB vs. InfluxDB 3

Overview

Time-series data is emerging in more and more applications, including IoT, DevOps, Finance, Retail,

Logistics, Oil and Gas, Manufacturing, Automotive, Aerospace, SaaS, even machine learning and AI. If

you are investing in a time-series database, that likely means you already have a meaningful amount

of time-series data piling up quickly and need a place to store and analyze it. You may also recognize

that the survival of your business will depend on the database you choose.

In this paper, we compare two leading time-series databases, TimescaleDB and InfluxDB, to

help developers choose the time-series database best suited for their needs. Typically database

comparisons focus on performance benchmarks. Yet performance is just a part of the overall picture;

it doesn’t matter how good benchmarks are if a database can’t be used in production because it has

an incompatible data model or query language, or if it lacks reliability. With that in mind, we begin

by comparing TimescaleDB and InfluxDB across three qualitative dimensions including data model,

query language, and reliability, before diving deeper with performance benchmarks. We then round

out with a comparison across database ecosystem, and operational management.

Data model

Relational data model

TimescaleDB is a relational database, while InfluxDB is more of a custom, NoSQL, non-relational

database. This means TimescaleDB relies on the relational data model, commonly found in

PostgreSQL, MySQL, SQL Server, Oracle, etc. On the other hand, InfluxDB has developed its own

custom data model, which, for the purpose of this comparison, is called the tagset data model.

With the relational model in TimescaleDB, each time-series measurement is recorded in its own row,

with a time field followed by any number of other fields, which can be floats, ints, strings, booleans,

arrays, JSON blobs, geospatial dimensions, date/time/timestamps, currencies, binary data, or even

more complex data types. One can create indexes on any one field (standard indexes) or multiple

fields (composite indexes), or on expressions like functions, or even limit an index to a subset of rows

(partial index). Any of these fields can be used as a foreign key to secondary tables, which can then

store additional metadata.

Benchmarking TimescaleDB vs. InfluxDB 4

• Uses a flexible, narrow or wide table depending on how much data/metadata to record per reading

• Has many indexes to speed up queries or few indexes to reduce disk usage

• Denormalized metadata within the measurement row, or normalized metadata that lives in a

separate table, can be updated at any time

• A rigid schema validates input types or a schemaless JSON blob to increase iteration speed

• Check constraints validate inputs, for example, checking for uniqueness or non-null values

Advantages

• To get started, one needs to generally choose a schema and explicitly decide whether or not

have indexes

Disadvantages

Benchmarking TimescaleDB vs. InfluxDB 5

• If data naturally fits the tagset model, then it is easy to get started since as you don’t have to

worry about creating schemas or indexes

• The model is quite rigid and limited, with no ability to create additional indexes, indexes on

continuous fields (e.g., numerics), update metadata after the fact, enforce data validation, etc.

• The model may feel “schemaless”, but there is actually an underlying schema that is auto-

created from the input data, which may differ from the desired schema

Advantages

Disadvantages

Tagset data model

With the InfluxDB tagset data model, each measurement has a timestamp, and an associated set

of tags (tagset) and set of fields (fieldset). The fieldset represents the actual measurement reading

values, while the tagset represents the metadata to describe the measurements. Field data types

are limited to floats, ints, strings, and booleans, and cannot be changed without rewriting the data.

Tagset values are indexed while fieldset values are not. Also, tagset values are always represented as

strings, and cannot be updated.

Data model summary

If your data fits perfectly within the tagset data model, and you don’t expect that to change in the

future, then you should consider using InfluxDB as this model is easier to get started with. However,

the relational model is more versatile and offers more functionality, flexibility, and control. This

is especially important as your application evolves, and when planning your system, you should

consider both its current and future needs.

Benchmarking TimescaleDB vs. InfluxDB 6

TimescaleDB (SQL):

SELECT time, (memUsed / procTotal /
1000000) as value
 FROM measurements
 WHERE time > now() - ‘1 hour’;

InfluxDB (Flux):

// Memory used (in bytes)
memUsed = from(bucket: “telegraf/
autogen”)
 |> range(start: -1h)
 |> filter(fn: (r) =>
 r._measurement == “mem” and
 r._field == “used”
)

// Total processes running
procTotal = from(bucket: “telegraf/
autogen”)
 |> range(start: -1h)
 |> filter(fn: (r) =>
 r._measurement == “processes” and
 r._field == “total”
)

// Join memory used with total processes
and calculate
// the average memory (in MB) used for
running processes.
join(
 tables: {mem:memUsed,
proc:procTotal},
 on: [“_time”, “_stop”, “_start”,
“host”]
)
 |> map(fn: (r) => ({
 _time: r._time,
 _value: (r._value_mem / r._value_
proc) / 1000000
 })
)

Query language

From the beginning, TimescaleDB has firmly existed at the SQL end of the spectrum, fully embracing the

language from day 1, and later further extending it to simplify time-series analysis. In contrast, InfluxDB

began with a “SQL-like” query language (called InfluxQL), placing it in the middle of the spectrum, and

has recently made a marked move towards the “custom” end with its new Flux query language.

At a high-level, here’s how the two language syntaxes compare, using the computation of an

exponential moving average as an example:

Benchmarking TimescaleDB vs. InfluxDB 7

Query language summary

While Flux may make some tasks easier, there are significant trade-offs to adopting a custom query

language like it. New query languages introduce significant overhead, reduce readability, force a

greater learning curve onto new users, and possess a scarcity of compatible tools. Additionally, they

may not even be a viable option: rebuilding a system and re-educating a company to write and read a

new query language is often not practically possible. Particularly if the company already is using SQL-

compatible tools on top of the database for visualization.

Reliability

At its start, InfluxDB sought to completely write an entire database in Go. With its 0.9 release,

they completely rewrote the backend storage engine (the earlier versions of Influx were going in

the direction of a pluggable backend with LevelDB, RocksDB, or others). There are benefits from

this approach, yet these design decisions have significant implications that affect reliability. First,

InfluxDB has to implement the full suite of fault-tolerance mechanisms, including replication, high

availability, and backup/restore. Second, InfluxDB is responsible for its on-disk reliability, e.g., to

make sure all its data structures are both durable and resist data corruption across failures (and even

failures during the recovery of failures).

Due to its architectural decisions, TimescaleDB instead relies on the 25+ years of hard, careful

engineering work that the entire PostgreSQL community has done to build a rock-solid database that

can support truly mission-critical applications.

Additionally, given TimescaleDB’s design, it’s able to leverage the full complement of tools that the

PostgreSQL ecosystem offers and and all of these are available in open-source: streaming replication

for high availability and read-only replicas, pg_dump and pg_recovery for full database snapshots,

pg_basebackup and log shipping / streaming for incremental backups and arbitrary point-in-time

recovery, WAL-E for continuous archiving to cloud storage, and robust COPY FROM and COPY TO tools

for quickly importing/exporting data with a variety of formats.

InfluxDB, on the hand, had to build all these tools from scratch and it doesn’t offer many of these

capabilities. It initially offered replication and high availability in its open source, but subsequently

pulled this capability out of open source and into its enterprise product. Its backup tools have the

ability to perform a full snapshot and recover to this point-in-time, and only recently added some

support for a manual form of incremental backups. Its ability to easily and safely export large

volumes of data is also quite limited.

Benchmarking TimescaleDB vs. InfluxDB 8

Databases need to provide strong on-disk reliability and durability, so that once a database has

committed to storing a write, it is safely persisted to disk. In fact, for very large data volumes, the same

argument even applies to indexing structures, which could otherwise take hours or days to recover;

there’s good reason that file systems have moved from painful fsck recovery to journaling mechanisms.

TimescaleDB does not change the lowest levels of PostgreSQL storage, nor interfere with the proper

function of its write-ahead log. (The WAL ensures that as soon a write is accepted, it gets written to

an on-disk log to ensure safety and durability, even before the data is written to its final location and

all its indexes are safely updated.) These data structures are critical for ensuring consistency and

atomicity; they prevent data from becoming lost or corrupted, and ensure safe recovery. Alternatively,

InfluxDB had to design and implement all this functionality itself from scratch. This is a notoriously

hard problem in databases that typically takes many years or even decades to get correct.

Reliability summary

These challenges and problems are not unique to InfluxDB, and every developer of a reliable, stateful

service must grapple with them. Every database goes through a period when it sometimes loses data

because it’s really hard to get all the corner cases right. PostgreSQL went through this period in the

1990s, while InfluxDB still needs to figure out the kinks and has many years of dedicated engineering

effort in store to catch up.

Benchmarking TimescaleDB vs. InfluxDB 9

Performance

Below is a quantitative comparison of the two databases across a variety of insert and read

workloads. Given how common high-cardinality datasets are within time-series, we first look at how

TimescaleDB and InfluxDB handle this issue.

Insert performance

For insert performance, we used the following setup for each database:

• TimescaleDB version 1.2.2, InfluxDB version 1.7.6

• 1 remote client machine, 1 database server, both in the same cloud datacenter

• AWS EC2 instance: i3.xlarge (4 vCPU, 30GB memory)

• 4 1-TB disks in a raid0 configuration (EXT4 filesystem)

• Both databases were given all available memory

• Dataset: 100–1,000,000 simulated devices generated 1–10 CPU metrics every 10 seconds for

~100M reading intervals, ~1B metrics (1 month interval for 100 devices; 3 days for 4,000; 3 hours

for 100,000; 3 minutes for 1,000,000), generated with the Time Series Benchmark Suite (TSBS).

• Schemas used for TimescaleDB (1) and InfluxDB (2)

• 10K batch size was used for both on inserts

• For TimescaleDB, we set the chunk size depending on the data volume, aiming for 10-15 chunks

(more here)

• For InfluxDB, we enabled the TSI (time series index)

https://github.com/timescale/timescaledb/releases/tag/1.2.2
https://github.com/influxdata/influxdb/releases/tag/v1.7.6
https://github.com/timescale/tsbs
https://docs.timescale.com/using-timescaledb/hypertables?utm_source=timescale-blog&utm_medium=referral&utm_campaign=influx-benchmark-post&utm_content=seconddocslink#best-practices
https://docs.influxdata.com/influxdb/v1.6/concepts/tsi-details/

Benchmarking TimescaleDB vs. InfluxDB 10

Insert performance summary

• For workloads with extremely low cardinality, the databases are comparable with TimescaleDB

outperforming InfluxDB by 30%

• As cardinality increases, InfluxDB insert performance drops off dramatically faster than that

with TimescaleDB

• For workloads with high cardinality, TimescaleDB outperforms InfluxDB by over 11x

• If your insert performance is far below these benchmarks (e.g., if it is 2,000 rows / second), then

insert performance will not be your bottleneck

Note: These metrics are measured in terms of rows per second (in the case of InfluxDB, defined as

a collection of metrics recorded at the same time). If you are collecting multiple metrics per row,

then the total number of metrics per second can be much higher. For example, in our [4,000 devices

x 10 metrics] test, you would multiply [rows per second] by [10], resulting in 1.44M metrics/sec for

TimescaleDB and 0.56M metrics/sec for InfluxDB.

Read latency

For benchmarking read latency, we used the following setup for each database:

(The read latency setup varies from the previous one focused on inserts because this was conducted

earlier in time.)

• TimescaleDB version 0.10.1, InfluxDB version 1.5.2

• 1 remote client machine, 1 database server, both in the same cloud datacenter

• Azure instance: Standard DS4 v2 (8 vCPU, 28 GB memory)

• 4 1-TB disks in a raid0 configuration (EXT4 filesystem)

• Both databases were given all available memory

• Dataset: 100–4,000 simulated devices generated 1–10 CPU metrics every 10 seconds for 3 full

days (~100M reading intervals, ~1B metrics)

• 10K batch size was used for both on inserts

• For TimescaleDB, we set the chunk size to 12 hours, resulting in 6 total chunks (more here)

• For InfluxDB, we enabled the TSI (time series index)

https://github.com/timescale/timescaledb/releases/tag/0.10.1
https://github.com/influxdata/influxdb/releases/tag/v1.5.2
http://docs.timescale.com/v0.9/using-timescaledb/hypertables?utm_source=timescale-blog&utm_medium=referral&utm_campaign=influx-benchmark-post&utm_content=seconddocslink#best-practices
https://docs.influxdata.com/influxdb/v1.6/concepts/tsi-details/

Benchmarking TimescaleDB vs. InfluxDB 11

On read (i.e., query) latency, the results are more complex. Unlike inserts which primarily vary on

cardinality size (and perhaps also batch size), the universe of possible queries is essentially infinite,

especially with a language as powerful as SQL. Often the best way to benchmark read latency is to do

it with the actual queries you plan to execute. For this case, we use a broad set of queries to mimic

the most common query patterns.

The results are below, using the same workloads we used for inserts. Latencies in this chart are all shown

as milliseconds, with an additional column showing the relative performance of TimescaleDB compared

to InfluxDB (highlighted in orange when TimescaleDB is faster, in blue when InfluxDB is faster).

Benchmarking TimescaleDB vs. InfluxDB 12

Benchmarking TimescaleDB vs. InfluxDB 13

Read latency performance summary

• For simple queries the results vary quite a bit; there are some where one database is clearly

better than the other, while others depend on the cardinality of your dataset. The difference here

is often in the range of single-digit to double-digit milliseconds

• When aggregating one metric, InfluxDB outperforms TimescaleDB. However, when aggregating

multiple metrics, TimescaleDB outperforms InfluxDB.

• When selecting rows based on a threshold, TimescaleDB outperforms InfluxDB, except in the one

case of computing threshold on one device with a high cardinality dataset

• For complex queries, TimescaleDB vastly outperforms InfluxDB, and supports a broader range of

query types; the difference here is often in the range of seconds to tens of seconds.

Stability issues during benchmarking

It is worth noting that we had several operational issues benchmarking InfluxDB as our datasets

grew, even with TSI enabled. In particular, as we experimented with higher cardinality data sets

(100K+ tags), we ran into trouble with both inserts and queries on InfluxDB (but not TimescaleDB).

While we were able to insert batches of 10K into InfluxDB at lower cardinalities, once we got·to 1M

cardinality we would experience timeouts and errors with batch sizes that large. We had to cut our

batches down to 1–5K and use client side code to deal with the backpressure incurred at higher

cardinalities. We had to force our client code to sleep for up to 20 seconds after requests received

errors writing the batches. With TimescaleDB, we were able to write large batches size at higher

cardinality without issue.

Starting at 100K cardinality, we also experienced problems with some of our read queries on

InfluxDB. Our InfluxDB HTTP connection would error out with a cryptic ‘End of File’ message. When

we investigated the InfluxDB server we found out that InfluxDB had consumed all available memory

to run the query and subsequently crashed with an Out of Memory error. Since PostgreSQL helpfully

allows us to limit system memory usage with settings like shared_buffers and work_mem, this

generally was not an issue for TimescaleDB even at higher cardinalities.

Benchmarking TimescaleDB vs. InfluxDB 14

High-cardinality datasets

InfluxDB and the TSI

High-cardinality datasets are a significant weakness for InfluxDB. This is because of how the InfluxDB

developers have architected their system, starting with their Time-series Index (TSI).

The InfluxDB TSI is a home-grown log-structured merge tree based system comprised of various data

structures, including hashmaps and bitsets. This includes: an in-memory log (“LogFile”) that gets

periodically flushed to disk when it exceeds a threshold (5MB) and compacted to an on-disk memory-

mapped index (“IndexFile”); a file (“SeriesFile”) that contains a set of all series keys across the entire

database. (Described here in their documentation.)

The performance of the TSI is limited by the complex interactions of all of these data structures.

The design decisions behind the TSI also leads to several other limitations with performance

implications:

• Their total cardinality limit, according to the InfluxDB documentation, is around 30 million

(although based on the graph above, InfluxDB starts to perform poorly well before that), or far

below what is often required in time-series use cases like IoT.

• InfluxDB indexes tags but not fields, which means that queries that filter on fields can not

perform better than full scans. For example, if one wanted to search for all rows where there was

no free memory (e.g, something like, SELECT * FROM sensor_data WHERE mem_free = 0), one

could not do better than a full linear scan (i.e., O(n) time) to identify the relevant data points.

• The set of columns included in the index is completely fixed and immutable. Changing what

columns in your data are indexed (tagged) and what things are not requires a full rewrite of your

data.

• InfluxDB is only able to index discrete, and not continuous, values due to its reliance on

hashmaps. For example, to search all rows where temperature was greater than 90 degrees (e.g.,

something like SELECT * FROM sensor_data WHERE temperature > 90), one would again have to

fully scan the entire dataset.

• Your cardinality on InfluxDB is affected by your cardinality across all time, even if some fields/

values are no longer present in your dataset. This is because the SeriesFile stores all series keys

across the entire dataset.

https://docs.influxdata.com/influxdb/v1.7/concepts/tsi-details/
https://docs.influxdata.com/influxdb/v1.7/concepts/tsi-details/

Benchmarking TimescaleDB vs. InfluxDB 15

TimescaleDB and B-trees

In contrast, TimescaleDB is a relational database that relies on a proven data structure for indexing

data: the B-tree. This decision leads to its ability to scale to high cardinalities.

First, TimescaleDB partitions your data by time, with one B-tree mapping time-segments to the

appropriate partition (“chunk”). All of this partitioning happens behind the scenes and is hidden

from the user, who is able to access a virtual table (“hypertable”) that spans all of their data across all

partitions.

Next, TimescaleDB allows for the creation of multiple indexes across your dataset (e.g., for

equipment_id, sensor_id, firmware_version, site_id). These indexes are then created on every chunk,

by default in the form of a B-tree. (One can also create indexes using any of the built-in PostgreSQL

index types: Hash, GiST, SP-GiST, GIN, and BRIN.)

This approach has a few benefits for high-cardinality datasets:

• The simpler approach leads to a clearer understanding of how the database performs. As long

as the indexes and data for the dataset we want to query fit inside memory, which is something

that can be tuned, cardinality becomes a non-issue.

• In addition, since the secondary indexes are scoped at the chunk level, the indexes themselves

only get as large as the cardinality of the dataset for that range of time.

• You have control over which columns to index, including the ability to create compound indexes

over multiple columns. You can also add or delete indexes anytime you want, for example if your

query workloads change. Unlike in InfluxDB, changing your indexing structure in TimescaleDB

does not require you to rewrite the entire history of your data.

• You can create indexes on discrete and continuous fields, particularly because B-trees work

well for a comparison using any of the following operators: <, <=, =, >=, >, BETWEEN, IN,

IS NULL, IS NOT NULL. Our example queries from above (SELECT * FROM sensor_data

WHERE mem_free = 0 and SELECT * FROM sensor_data WHERE temperature > 90) will run in

logarithmic, or O(log n), time.

• The other supported index types can come in handy in other scenarios, e.g., GIST indexes for

“nearest neighbor” searches.

https://www.postgresql.org/docs/current/indexes-types.html
https://www.postgresql.org/docs/current/indexes-types.html

Benchmarking TimescaleDB vs. InfluxDB 16

Ecosystem

Below is a non-exhaustive list of 1st party (e.g., the components of the InfluxData TICK stack) and 3rd

party tools that connect with either database, to show the relative difference in the two database

ecosystems. To reflect the popularity of the open source projects, we included the number of GitHub

stars they had as of publication in parentheses, e.g., Apache Kafka (9k+). For many of the unofficial

projects for InfluxDB, for example, the unofficial supporting project was often very early (very few

stars) or inactive (no updates in months or years).

Benchmarking TimescaleDB vs. InfluxDB 17

Ecosystem summary

The database can only do so much, which is when one typically turns to the broader 3rd party

ecosystem for additional capabilities. This is when the size and scope of the ecosystem make a large

difference. TimescaleDB’s approach of embracing SQL pays large dividends, as it allows TimescaleDB

to speak with any tool that speaks SQL. In contrast, the non-SQL strategy chosen by InfluxDB isolates

the database, and limits how InfluxDB can be used by its developers.

Operational management

Even if a database satisfies all the above needs, it still needs to work, and someone needs to operate

it. Operational management requirements typically boil down to these categories: high availability,

resource consumption (memory, disk, cpu), and general tooling.

High availability

No matter how reliable the database, at some point your node will go down: hardware errors, disk

errors, or some other unrecoverable issue. At that point, you will want to ensure you have a standby

available for failover with no loss of data.

TimescaleDB supports high availability via PostgreSQL streaming replication. At one point, open

source InfluxDB offered high availability via InfluxDB-relay, but it appears to be a dormant project

(last update November 2016). Today InfluxDB HA is only offered by their enterprise version.

Resource consumption

For memory utilization, cardinality again plays a large role. Below are some graphs using the same

workloads as before for measuring insert performance.

At low cardinality (100 devices sending

one metric), InfluxDB requires less

memory than TimescaleDB:

Benchmarking TimescaleDB vs. InfluxDB 18

Both databases are inserting the same volume of data but take different amounts of time, which is

why both line plots above and below don’t end at the same time. However, as cardinality increases

(100,000 devices sending 10 metrics),

InfluxDB memory consumption far

outpaces that of TimescaleDB (and with

more volatility):

There was no way to limit total memory

consumed by the InfluxDB TSI. At higher

cardinalities, InfluxDB would run out of

memory on inserts, which would lead to

the database crashing and restarting.

InfluxDB, like most databases that use

a column-oriented approach, offers significantly better on-disk compression than PostgreSQL and

TimescaleDB. With the dataset used for the performance benchmarks, here’s how the two databases

fared at the varying cardinalities:

• 100 devices x 1 metric x 30 days: InfluxDB (12MB) vs. TimescaleDB (700MB) = 59x

• 100 devices x 10 metrics x 30 days: InfluxDB (113MB) vs. TimescaleDB (1400MB) = 12x

• 4,000 devices x 10 metrics x 3 days: InfluxDB (769MB) vs. TimescaleDB (5900MB) = 8x

Note: Disk size benchmarks were run using ZFS. Numbers do not include WAL size, as that is

configurable by the user.

If minimizing disk storage is a primary requirement for your workload, then this is a big

difference, and you may want to consider InfluxDB. However, as we saw earlier, depending on

your workload InfluxDB may also require much more memory. Given that memory is typically

100x-1000x more expensive than disk, trading off high disk usage for lower memory may be

worthwhile for certain workloads.

TimescaleDB also allows one to elastically scale the number of disks associated with a hypertable

without any data migration, which is another option to offset the higher disk consumption,

particularly in SAN or cloud contexts. Users have scaled a single TimescaleDB node to 10s of TB

using this method. The other cost of InfluxDB’s better on-disk compression is that it required the

developers to rewrite the backend storage engine from scratch, which raises reliability challenges.

Benchmarking TimescaleDB vs. InfluxDB 19

General tooling

When operating TimescaleDB, one inherits all of the battle-tested tools that exist in the PostgreSQL

ecosystem: pg_dump and pg_restore for backup/restore, HA/failover tools like Patroni, load

balancing tools for clustering reads like Pgpool, etc. Since TimescaleDB looks and feels like

PostgreSQL, there are minimal operational learning curves. For operating InfluxDB, one is limited to

the tools that the Influx team has built: backup, restore, internal monitoring, etc.

Next steps

In this paper, we performed a detailed comparison of TimescaleDB and InfluxDB. One of the worst

mistakes a business can make is investing in a technology that will limit it in the future, let alone be

the wrong fit today. That’s why we encourage you to take a step back and analyze your stack before

you find your database infrastructure crumbling to the ground.

If you are ready to get started with TimescaleDB, follow the instructions below. If you have any

questions along the way, please contact us.

Additional resources

• Benchmark using the Time Series Benchmark Suite (TSBS)

• Follow our blog for database insights, engineering updates, tutorials, and more

Where to go from here...

• Install TimescaleDB

• Join the Slack channel

• Reach out to hello@timescale.com and let us know how we can help

http://github.com/timescale/tsbs
http://blog.timescale.com
https://docs.timescale.com/v0.12/getting-started/installation/mac/installation-homebrew
http://slack.timescale.com
mailto:hello%40timescale.com?subject=

