
TigerData Architecture for Real-Time Analytics
Michael J. Freedman

TigerData
James Blackwood-Sewell

TigerData

Abstract
TigerData (formerly Timescale) is the creator of TimescaleDB,
a powerful open-source application database designed for
real-time analytics on time-series data. Built as a PostgreSQL
extension, TimescaleDB integrates seamlessly with the Post-
gres ecosystem and enhances it with automatic time-based
partitioning, hybrid row-columnar storage, and vectorized
execution—enabling high-ingest performance, sub-second
queries, and full SQL support at scale.
Through incrementally updated materialized views and

advanced analytical functions, TimescaleDB reduces com-
pute overhead and significantly improves query efficiency.
Developers can continue using familiar SQL workflows and
tools, while benefiting from a database purpose-built for fast,
scalable analytics.
TigerData also offers Tiger Postgres, an enhanced Post-

greSQL distribution that includes and extends TimescaleDB.
Our fully managed, cloud-native database service, Tiger
Cloud, runs optimized Tiger Postgres instances to deliver
a seamless developer experience and powerful analytics at
scale.
This document outlines the architectural choices and op-

timizations that power Timescale’s performance and scala-
bility while preserving PostgreSQL’s reliability and transac-
tional guarantees.

1 Introduction
1.1 What is real-time analytics?
Real-time analytics enables applications to process and query
data as it is generated and as it accumulates, delivering
immediate and ongoing insights for decision-making. Un-
like traditional analytics, which relies on batch processing
and delayed reporting, real-time analytics supports both in-
stant queries on fresh data and fast exploration of historical
trends—powering applications with sub-second query per-
formance across vast, continuously growing datasets.

Many modern applications depend on real-time analytics
to drive critical functionality. For example: (1) IoT monitor-
ing systems track sensor data over time, identifying long-
term performance patterns while still surfacing anomalies
as they arise. This allows businesses to optimize mainte-
nance schedules, reduce costs, and improve reliability. (2)
Financial and business intelligence platforms analyze both
current and historical data to detect trends, assess risk, and
uncover opportunities—from tracking stock performance

over a day, week, or year to identifying spending patterns
across millions of transactions. (3) Interactive customer dash-
boards empower users to explore live and historical data in a
seamless experience—whether it’s a SaaS product providing
real-time analytics on business operations, a media platform
analyzing content engagement, or an e-commerce site sur-
facing personalized recommendations based on recent and
past behavior.
Real-time analytics isn’t just about reacting to the latest

data, although that is critically important. It’s also about de-
livering fast, interactive, and scalable insights across all your
data, enabling better decision-making and richer user expe-
riences. Unlike traditional ad-hoc analytics used by analysts,
real-time analytics powers applications—driving dynamic
dashboards, automated decisions, and user-facing insights
at scale.
To achieve this, real-time analytics systems must meet

several key requirements:
• Low-latency queries ensure sub-second response
times even under high load, enabling fast insights
for dashboards, monitoring, and alerting.

• Low-latency ingest minimizes the lag between when
data is created and when it becomes available for anal-
ysis, ensuring fresh and accurate insights.

• Data mutability allows for efficient updates, correc-
tions, and backfills, ensuring analytics reflect the most
accurate state of the data.

• Concurrency and scalability enable systems to han-
dle high query volumes and growing workloads with-
out degradation in performance.

• Seamless access to both recent and historical data
ensures fast queries across time, whether analyzing
live, streaming data, or running deep historical queries
on days or months of information.

• Query flexibility provides full SQL support, allowing
for complex queries with joins, filters, aggregations,
and analytical functions.

1.2 TigerData: Real-time analytics from PostgreSQL
Tiger Postgres is a high-performance database that runs on
Tiger Cloud to bring real-time analytics to applications. It
combines fast queries, high ingest performance, and full
SQL support—all while ensuring scalability and reliability
in the cloud. Tiger Postgres extends PostgreSQL with the
TimescaleDB extension (which can also be self-hosted). It
enables sub-second queries on vast amounts of incoming data

while providing optimizations designed for continuously
updating datasets.
TigerData achieves this through the following optimiza-

tions:
• Efficient data partitioning: Automatically and trans-
parently partitioning data into chunks, ensuring fast
queries, minimal indexing overhead, and seamless
scalability

• Row-columnar storage: Providing the flexibility of
a row store for transactions and the performance of a
column store for analytics

• Optimized query execution: Using techniques like
chunk and batch exclusion, columnar storage, and
vectorized execution to minimize latency

• Continuous aggregates: Precomputing analytical re-
sults for fast insights without expensive reprocessing

• Cloud-native operation: Compute/compute separa-
tion, elastic usage-based storage, horizontal scale out,
data tiering to object storage

• Operational simplicity Offering high availability,
connection pooling, and automated backups for reli-
able and scalable real-time applications

With TigerData, developers can build low-latency, high-
concurrency applications that seamlessly handle streaming
data, historical queries, and real-time analytics while lever-
aging the familiarity and power of PostgreSQL.

2 Data model
Today’s applications demand a database that can handle real-
time analytics and transactional queries without sacrificing
speed, flexibility, or SQL compatibility (including joins be-
tween tables). TimescaleDB achieves this with hypertables,
which provide an automatic partitioning engine, and hy-
percore, a hybrid row-columnar storage engine designed to
deliver high-performance queries and efficient compression
(up to 95%) within PostgreSQL.

2.1 Efficient data partitioning
TimescaleDB provides hypertables (Figure 1), a table abstrac-
tion that automatically partitions data into chunks in real
time (using time stamps or incrementing IDs) to ensure fast
queries and predictable performance as datasets grow. Unlike
traditional relational databases that require manual parti-
tioning, hypertables automate all aspects of partition man-
agement, keeping locking minimal even under high ingest
load.
At ingest time, hypertables ensure that PostgreSQL can

deal with a constant stream of data without suffering from
table bloat and index degradation by automatically parti-
tioning data across time. Because each chunk is ordered by
time and has its own indexes and storage, writes are usu-
ally isolated to small, recent chunks—keeping index sizes
small, improving cache locality, and reducing the overhead

Hypertables
chunk_time_interval = “1 day”

Chunk ID 1

2025-01-02 00:00:00 36

2025-01-02 06:00:00 5

2025-01-02 23:00:00 29

2025-01-02 00:00:00 36

2025-01-02 06:00:00 5

2025-01-02 23:00:00 29

Chunk ID 2

2025-01-03 00:00:00 17

2025-01-03 06:00:00 8

2025-01-03 23:00:00 6

2025-01-03 00:00:00 17

2025-01-03 06:00:00 8

2025-01-03 23:00:00 6

Chunk ID 3

2025-01-04 00:00:00 41

2025-01-04 06:00:00 14

2025-01-04 23:00:00 5

2025-01-04 00:00:00 41

2025-01-04 06:00:00 14

2025-01-04 23:00:00 5

HypertableNormal table

timetime valuevalue

Figure 1. Hypertables automatically partition data into dis-
joint chunks along a primary column (typically a timestamp
or monotonic ID), allowing for efficient data management.

of vacuum and background maintenance operations. This
localized write pattern minimizes write amplification and
ensures consistently high ingest performance, even as total
data volume grows.
At query time, hypertables efficiently exclude irrelevant

chunks from the execution plan when the partitioning col-
umn is used in a WHERE clause. This architecture ensures
fast query execution, avoiding the gradual slowdowns that
affect non-partitioned tables as they accumulate millions of
rows. Chunk-local indexes keep indexing overhead minimal,
ensuring index operations scans remain efficient regardless
of dataset size.
Hypertables are the foundation for all of TimescaleDB’s

real-time analytics capabilities. They enable seamless data
ingestion, high-throughput writes, optimized query execu-
tion, and chunk-based lifecycle management—including au-
tomated data retention (drop a chunk) and data tiering (move
a chunk to object storage).

2.2 Row-columnar storage
Traditional databases force a trade-off between fast inserts
(row-based storage) and efficient analytics (columnar stor-
age). TimescaleDB’s storage engine, hypercore, eliminates
this trade-off, allowing real-time analytics without sacrific-
ing transactional capabilities.
Hypercore dynamically stores data in the most efficient

format for its lifecycle (Figure 2):
• Row-based storage for recent data: The most recent

chunk (and possibly more) is always stored in the row-
store, ensuring fast inserts, updates, and low-latency
single record queries. Additionally, row-based storage
is used as a write through for inserts and updates to
columnar storage.

• Columnar storage for analytical performance: Chunks
are automatically compressed into the columnstore,

2

Time

sensor-id-1 , timestamp-1 . , status-1 . , value-1

sensor-id-2 , timestamp-2 . , status-2 . , value-2

sensor-id-3 , timestamp-3 . , status-3 . , value-3

sensor-id-4 , timestamp-4 . , status-4 . , value-4

...

Automatic
columnization

sensor-id

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

...

timestamp status value

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

...

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

...

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

[1000 values]

...
Columnstore

Rowstore

Hypertable with hypercore enabled

Figure 2. With hypercore, recent chunks can remain in
rowstore format, while chunks covering older ranges are
automatically converted into columnar format.

optimizing storage efficiency and accelerating analyt-
ical queries.

Unlike traditional columnar databases, hypercore allows
data to be inserted or modified at any stage, making it a
flexible solution for both high-ingest transactional workloads
and real-time analytics—within a single database.

2.3 Columnar storage layout
TimescaleDB’s columnar storage layout optimizes analytical
query performance by structuring data efficiently on disk, re-
ducing scan times, andmaximizing compression rates. Unlike
traditional row-based storage, where data is stored sequen-
tially by row, columnar storage organizes and compresses
data by column, allowing queries to retrieve only the neces-
sary fields in batches rather than scanning entire rows. But
unlike many column store implementations, TimescaleDB’s
columnstore supports full mutability—inserts, upserts, up-
dates, and deletes, even at the individual record level—with
transactional guarantees. Data is also immediately visible to
queries as soon as it is written.
Columnar batches. TimescaleDB uses columnar colloca-
tion and columnar compression within row-based storage
to optimize analytical query performance while maintain-
ing full PostgreSQL compatibility. This approach ensures
efficient storage, high compression ratios, and rapid query
execution.
A rowstore chunk is converted to a columnstore chunk

by successfully grouping together sets of rows (typically up
to 1000) into a single batch, then converting the batch into
columnar form (as shown in Figure 3a).

Each compressed batch does the following:

Rowstore chunk

id time value id time value

1 2025-01-01 00:00 10.1 1, 
2, 
3, 
...

2025-01-01 00:00, 
2025-01-01 00:00, 
2025-01-01 00:00, 
...

...

...

...

10.1, 
19.7, 
0.1, 
..

2 2025-01-01 00:00 19.7

3 2025-01-01 00:00 0.1

2 2025-01-01 00:05 20.8

3 2025-01-01 00:05 0.1

1 2025-01-01 00:05 10.0

2 2025-01-01 00:10 20.0

3 2025-01-01 00:10 0.5

1 2025-01-01 00:10 10.9

2 2025-01-01 00:20 21.0

1 2025-01-01 00:20 10.0

Columnstore chunk

Automatic

conversion ...

...

...

...

...

...

Each batch compresses

up to 1000 rowstore rows,

storing their columns

contiguously as arrays.

ORDERBY time

(a) When converting a hypertable chunk to a columnstore, batches
of rows (typically up to 1000) are rewritten as columnar array and
compressed with type-specific compression algorithms.

Rowstore chunk

id time value

id time value1 2025-01-01 00:00 10.1

1 2025-01-01 00:00, 
2025-01-01 00:05, 
2025-01-01 00:10, 
...

...

...

...

10.1, 
10.0, 
10.9, 
..

2 2025-01-01 00:00 19.7

3 2025-01-01 00:00 0.1

2 2025-01-01 00:05 20.8

3 2025-01-01 00:05 0.1

1 2025-01-01 00:05 10.0

2 2025-01-01 00:10 20.0

3 2025-01-01 00:10 0.5

1 2025-01-01 00:10 10.9

2 2025-01-01 00:20 21.0

1 2025-01-01 00:20 10.0

Columnstore chunk

Automatic

conversion 2

3

1

...

...

...

Each batch compresses

up to 1000 rowstore rows,

storing their columns

contiguously as arrays.

Batches internally ordered

by ORDERBY

Batches segmented by

by SEGMENTBY

SEGMENTBY id
ORDERBY time

(b) To optimize query performance, batches of rowswith a common
identifier (SEGMENTBY) are grouped and collocated together, and
ordered within batches as appropriate (ORDERBY).

Figure 3. Columnstore layout

• Encapsulates columnar data in compressed arrays of
up to 1,000 values per column, stored as a single entry
in the underlying compressed table

• Uses a column-major format within the batch, en-
abling efficient scans by co-locating values of the
same column and allowing the selection of individual
columns without reading the entire batch

• Applies advanced compression techniques at the col-
umn level, including run-length encoding, delta en-
coding, and Gorilla compression, to significantly re-
duce storage footprint (by up to 95%) and improve I/O
performance.

While the chunk interval of rowstore and columnstore
batches usually remains the same, TimescaleDB can also
combine columnstore batches so they use a different chunk
interval.
This architecture provides the benefits of columnar stor-

age – optimized scans, reduced disk I/O, and improved an-
alytical performance — while seamlessly integrating with
PostgreSQL’s row-based execution model.
Segmenting and ordering data. To optimize query perfor-
mance, TimescaleDB allows explicit control over how data is
physically organized within columnar storage (as shown in

3

Figure 3b). By structuring data effectively, queries can mini-
mize disk reads and executemore efficiently, using vectorized
execution for parallel batch processing where possible.

Timescale’s data model employs several optimizations:

• Group related data together to improve scan effi-
ciency.Organizing rows into logical segments ensures
that queries filtering by a specific value only scan rele-
vant data sections. For example, in the above, querying
for a specific ID is particularly fast. (Implemented with
SEGMENTBY.)

• Sort datawithin segments to accelerate range queries.
Defining a consistent order reduces the need for post-
query sorting, making time-based queries and range
scans more efficient. (Implemented with ORDERBY.)

• Reduce disk reads and maximize vectorized exe-
cution. A well-structured storage layout enables ef-
ficient batch processing (Single Instruction, Multiple
Data, or SIMD vectorization) and parallel execution,
optimizing query performance.

By combining segmentation and ordering, TimescaleDB
ensures that columnar queries are not only fast but also
resource-efficient, enabling high-performance real-time ana-
lytics.

2.4 Data mutability
Traditional databases force a trade-off between fast updates
and efficient analytics. Fully immutable storage is impracti-
cal in real-world applications, where data needs to change.
Asynchronous mutability—where updates only become vis-
ible after batch processing—introduces delays that break
real-time workflows. In-place mutability, while theoretically
ideal, is prohibitively slow in columnar storage, requiring
costly decompression, segmentation, ordering, and recom-
pression cycles.
Hypercore navigates these trade-offs with a hybrid ap-

proach that enables immediate updates without modifying
compressed columnstore data in place, as shown in Figure 4.
By staging changes in an interim rowstore chunk, hyper-
core allows updates and deletes to happen efficiently while
preserving the analytical performance of columnar storage.
Real-time writes without delays. All new data which is
destined for a columnstore chunk is first written to an interim
rowstore chunk, ensuring high-speed ingestion and immedi-
ate queryability. Unlike fully columnar systems that require
ingestion to go through compression pipelines, hypercore
allows fresh data to remain in a fast row-based structure be-
fore being later compressed into columnar format in ordered
batches as normal.

Queries transparently access both the rowstore and column-
store chunks, meaning applications always see the latest data
instantly, regardless of its storage format.

Efficient updates and deleteswithout performance penal-
ties. When modifying or deleting existing data, hypercore
avoids the inefficiencies of both asynchronous updates and
in-placemodifications. Instead ofmodifying compressed stor-
age directly, affected batches are decompressed and staged
in the interim rowstore chunk, where changes are applied
immediately.
These modified batches remain in row storage until they

are recompressed and reintegrated into the columnstore
(which happens automatically via a background process).
This approach ensures updates are immediately visible, but
without the expensive overhead of decompressing and rewrit-
ing entire chunks. This approach avoids: (1) the rigidity of
immutable storage, which requires workarounds like ver-
sioning or copy-on-write strategies; (2) the delays of asyn-
chronous updates, where modified data is only visible after
batch processing; (3) the performance hit of in-place muta-
bility, which makes compressed storage prohibitively slow
for frequent updates; and (4) the restrictions some databases
have on not altering the segmentation or ordering keys.

3 Query optimizations
Real-time analytics isn’t just about raw speed—it’s about
executing queries efficiently, reducing unnecessary work,
and maximizing performance. TimescaleDB optimizes every
step of the query lifecycle to ensure that queries scan only
what’s necessary, make use of data locality, and execute in
parallel for sub-second response times over large datasets.

3.1 Skip unnecessary data
TimescaleDB minimizes the amount of data a query touches,
reducing I/O and improving execution speed:
Primary partition exclusion (Figure 5a). Queries auto-
matically skip irrelevant partitions (chunks) based on the
primary partitioning key (usually a timestamp), ensuring
they only scan relevant data. Applies to both rowstore and
columnstore chunks.
Secondary partition exclusion (Figure 5b). Min/max
metadata allows queries filtering on correlated dimensions
(e.g., order_id or secondary timestamps) to exclude chunks
that don’t contain relevant data. Applies to columnstore
chunks.
Batch-level filtering (Figure 5d). Within each chunk, com-
pressed columnar batches are organized using SEGMENTBY
keys and ordered by ORDERBY columns. Indexes and min/max
metadata can be used to quickly exclude batches that don’t
match the query criteria. Applies to columnstore chunks.

3.2 Maximize locality
Organizing data for efficient access ensures queries are read
in the most optimal order (Figure 6), reducing unnecessary
random reads and reducing scans of unneeded data.

4

Rowstore chunk

id time value

1 2025-01-03 00:00 10.1

2 2025-01-03 00:00 19.7

3 2025-01-03 00:00 0.1

2 2025-01-03 00:05 20.8

3 2025-01-03 00:05 0.1

1 2025-01-03 00:05 10.0

2 2025-01-03 00:10 20.0

3 2025-01-03 00:10 0.5

1 2025-01-03 00:10 10.9

2 2025-01-03 00:20 21.0

1 2025-01-03 00:20 10.0

id time value

Columnstore chunk SEGMENTBY id

...

...

...

...

...

...

...

...

... ...

... ...

INSERTS, UPDATES, DELETES

TIME

2025-01-032025-01-022025-01-01

INSERTS, UPDATES, DELETES, SELECTS

INSERTS, UPDATES, DELETES, SELECTS

(routed based on partitioning column)

Interim rowstore chunk (created on demand)

id time value

...

...

...

id time value

Columnstore chunk SEGMENTBY id

...

...

...

...

...

...

...

...

... ...

... ...

SELECTS

routed

based on

record

location

UPDATE and DELETE

trigger batch

decompression

UPDATE and DELETE

trigger batch

decompression

INSERTS, UPDATES, DELETES SELECTS

(RE)COMPRESSION

DECOMPRESS 
BATCH

FOR UPDATES,

DELETES

DECOMPRESS 
BATCH

FOR UPDATES,

DELETES

(RE)COMPRESSION

Hypertable

chunk_size = 1 day

Interim rowstore chunk (created on demand)

id time value

...

...

...

routed

based on

record

location

Figure 4. Hypercore supports real-time data mutability by routing inserts, updates, and deletes to transparently queryable
intermim rowstore chunks. This design allows efficient modifications without compromising analytical performance, with
compressed columnstore data only being updated during asynchronous background recompression.

• Segmentation: Columnar batches are grouped using
SEGMENTBY to keep related data together, improving
scan efficiency.

• Ordering: Data within each batch is physically sorted
using ORDERBY, increasing scan efficiency (and reduc-
ing I/O operations), enabling efficient range queries,
and minimizing post-query sorting.

• Column selection: Queries read only the necessary
columns, reducing disk I/O, decompression overhead,
and memory usage.

3.3 Parallelize execution
Once a query is scanning only the required columnar data in
the optimal order, TimescaleDB is able to maximize perfor-
mance through parallel execution. As well as using multiple
workers, TimescaleDB accelerates columnstore query exe-
cution by using Single Instruction, Multiple Data (SIMD)
vectorization, allowing modern CPUs to process multiple
data points in parallel.

The TimescaleDB implementation of SIMD vectorization
(Figure 7) currently supports several forms:

• Vectorized decompression, which efficiently restores
compressed data into a usable form for analysis.

• Vectorized filtering, which rapidly applies filter condi-
tions across data sets.

• Vectorized aggregation, which performs aggregate cal-
culations, such as sum or average, across multiple data
points concurrently.

4 Accelerating queries with continuous
aggregates

Aggregating large datasets in real time can be expensive,
requiring repeated scans and calculations that strain CPU
and I/O. While some databases attempt to brute-force these
queries at runtime, compute and I/O are always finite re-
sources—leading to high latency, unpredictable performance,
and growing infrastructure costs as data volume increases.

Continuous aggregates, Timescale’s implementation of
incrementally updated materialized views, solve this by shift-
ing computation from every query run to a single, asynchro-
nous step after data is ingested (Figure 8). Only the time
buckets that receive new or modified data are updated, and
queries read precomputed results instead of scanning raw
data—dramatically improving performance and efficiency.

When you know the types of queries you’ll need ahead of
time, continuous aggregates allow you to pre-aggregate data
along meaningful time intervals—such as per-minute, hourly,

5

Primary partition exclusion
WHERE timestamp >= ‘2025-01-02 00:00’

Hypertable

chunk-2

timestamp

device_id

reading_id:

reading

chunk-1

timestamp

device_id

reading_id:

reading

2025-01-01 2025-01-02

chunk-3

timestamp

device_id

reading_id:

reading

2025-01-03

continue query with matching chunks

(a) TimescaleDB uses primary partition exclusion to skip entire
chunks during query execution based on time filters. Only chunks
whose time range intersects the query’s WHERE clause are included,
significantly improving query efficiency.

Secondary partition exclusion
WHERE reading_id = 10

Hypertable

chunk-2

timestamp

device_id

reading_id:

 (min: 7201, max 14400)

reading

chunk-1

timestamp

device_id

reading_id:

 (min: 0, max 7200)

reading

chunk-3

timestamp

device_id

reading_id:

 (min: 14401, max 21600)

reading

continue query with matching chunks

(b) Min/max metadata enables secondary partition exclusion on
selected non-primary dimensions like reading_id. Queries skip
chunks that fall outside the filtered range, further narrowing the
data scanned and reducing query latency.

PostgreSQL indexes (on columnar)
WHERE reading_id = 10

Hypertable

chunk-1

batch1 (1000 rows)

batch2 (1000 rows)

batch3 (1000 rows)

batch4 (1000 rows)

batch5 (1000 rows)

decompress
required columns

chunk-1 btree index

...

reading_id = 10-> batch1, row 10

...

(c) TimescaleDB supports PostgreSQL-style indexes on column-
store data. Queries use these indexes to locate specific values and
decompress only relevant batches, enabling fast lookups and selec-
tive scans.

Batch-level filtering (using SEGMENTBY and ORDERBY)
WHERE device_id = 1 AND timestamp > 2025-01-01 00:30:00

Hypertable

decompress
required columns

chunk-1

batch1 (1000 rows)
device_id: 1

timestamp: (min: 2025-01-01 00:00:00, max: 2025-01-01 00:16:39)

batch4 (1000 rows)
device_id: 2

timestamp: (min: 2025-01-01 00:16:40, max: 2025-01-01 00:33:19)

batch3 (1000 rows)
device_id: 1

timestamp: (min: 2025-01-01 00:16:40, max: 2025-01-01 00:33:19)

batch2 (1000 rows)
device_id: 2

timestamp: (min: 2025-01-01 00:00:00, max: 2025-01-01 00:16:39)

(d) Segmented and ordered batches enable fine-grained filtering
within chunks. Combined with min/max metadata for ORDERBY
columns, queries can skip entire batches and only decompress
those containing relevant values.

Figure 5. Query optimizations to skip unnecessary data.

or daily summaries—delivering instant results without on-
the-fly computation.

Continuous aggregates also avoid the time-consuming and
error-prone process of maintaining manual rollups, while
continuing to offer data mutability to support efficient up-
dates, corrections, and backfills. Whenever new data is in-
serted or modified in chunks which have been materialized,
TimescaleDB stores invalidation records reflecting that these
results are stale and need to be recomputed. Then, an asyn-
chronous process re-computes regions that include invali-
dated data, and updates thematerialized results. TimescaleDB
tracks the lineage and dependencies between continuous ag-
gregates and their underlying data, to ensure the continuous
aggregates are regularly kept up-to-date. This happens in
a resource-efficient manner, and where multiple invalida-
tions can be coalesced into a single refresh (as opposed to

refreshing any dependencies at write time, such as via a
trigger-based approach).
Continuous aggregates themselves are stored in hyper-

tables, and they can be converted to columnar storage for
compression, and raw data can be dropped, reducing storage
footprint and processing cost. Continuous aggregates also
support hierarchical rollups (e.g., hourly to daily to monthly)
and real-time mode (also shown in Figure 8), which merges
precomputed results with the latest ingested data to ensure
accurate, up-to-date analytics.
This architecture enables scalable, low-latency analytics

while keeping resource usage predictable—ideal for dash-
boards, monitoring systems, and any workload with known
query patterns.

6

id time value

1 2025-01-01 00:00, 
2025-01-01 00:05, 
2025-01-01 00:10, 
...

...

...

...

10.1, 
10.0, 
10.9, 
..

Columnstore chunk

2

3

1

...

...

...

Batches internally ordered

by ORDERBY and contain

min/max metadata for fast

filtering

Batches segmented by

by SEGMENTBY for

fast filtering

SEGMENTBY id
ORDERBY time

Each batch and column can be

selected and decompressed

independently

Figure 6. Columnstore batches are segmented and ordered
using SEGMENTBY and ORDERBY keys. Each batch carries meta-
data to enable selective decompression, allowing queries to
efficiently scan and filter only the necessary data.

Finalize aggregate

Append

Partial vectorized aggregate

Vectorized filtering

Vectorized expressions

Vectorized decompression

Arrow array per batch

Scan on columnstore chunk

Vectorized operation on
columnstore chunk

Partials

Partials

Compressed batches

Figure 7. TimescaleDB employs SIMD vectorization when
processing columnar batches.

4.1 Hyperfunctions for real-time analytics
Real-time analytics requires more than basic SQL functions;
efficient computation is essential as datasets grow in size and

Raw table

Oldest data Completion threshold Latest data

Materialized table

Query on Real-Time Aggregate across
pre-calculated and raw data

Figure 8. Continuous aggregates extend PostgreSQL materi-
alized views with incremental updates and real-timemerging
of raw and precomputed data, enabling fast, always-fresh
analytics.

complexity. TimescaleDB provides hyperfunctions, avail-
able through the timescaledb_toolkit extension, as high-
performance, SQL-native functions tailored for time-series
analysis. These include advanced tools for gap-filling, per-
centile estimation, time-weighted averages, counter correc-
tion, and state tracking, among others.
A key innovation of hyperfunctions is their support for

partial aggregation, which allows TimescaleDB to store in-
termediate computational states rather than just final results.
These partials can later be merged to compute rollups ef-
ficiently, avoiding expensive reprocessing of raw data and
reducing compute overhead. This is especially effective when
combined with continuous aggregates.

Consider a real-world example: monitoring request laten-
cies across thousands of application instances. You might
want to compute p95 latency per minute, then roll that up
into hourly and daily percentiles for dashboards or alerts.
With traditional SQL, calculating percentiles requires a full
scan and sort of all underlying data—making multi-level
rollups computationally expensive.

With Timescale, you can use the percentile_agg hyper-
function in a continuous aggregate to compute and store
a partial aggregation state for each minute. This state ef-
ficiently summarizes the distribution of latencies for that
time bucket, without storing or sorting all individual values.
Later, to produce an hourly or daily percentile, you simply
combine the stored partials—no need to reprocess the raw
latency values.
This approach provides a scalable, efficient solution for

percentile-based analytics. By combining hyperfunctions
with continuous aggregates, TimescaleDB enables real-time
systems to deliver fast, resource-efficient insights across
high-ingest, high-resolution datasets, without sacrificing ac-
curacy or flexibility.

7

Writes Reads Reads Reads

Primary node Read replica Read replica Read replica

Horizontal read scaling

Figure 9. Tiger Cloud supports horizontal read scaling by
replicating data across read replicas. This allows analytical
workloads to be distributed across multiple nodes, isolating
them from ingest traffic and improving performance.

5 Cloud-native architecture
Real-time analytics requires a scalable, high-performance,
and cost-efficient database that can handle high-ingest rates
and low-latency queries without overprovisioning. Tiger
Cloud is designed for elasticity, enabling independent scaling
of storage and compute, workload isolation, and intelligent
data tiering.

5.1 Independent storage and compute scaling
Real-time applications generate continuous data streams
while requiring instant querying of both fresh and historical
data. Traditional databases force users to pre-provision fixed
storage, leading to unnecessary costs or unexpected limits.
Tiger Cloud eliminates this constraint by dynamically scaling
storage based on actual usage:

• Storage expands and contracts automatically as data
is added or deleted, avoiding manual intervention.

• Usage-based billing ensures costs align with actual
storage consumption, eliminating large upfront allo-
cations.

• Compute can be scaled independently to optimize
query execution, ensuring fast analytics across both
recent and historical data.

With this architecture, databases grow alongside data
streams, enabling seamless access to real-time and historical
insights while efficiently managing storage costs.

5.2 Workload isolation for real-time performance
Balancing high-ingest rates and low-latency analytical queries
on the same system can create contention, slowing down
performance. Tiger Cloud mitigates this by allowing read
and write workloads to scale independently (Figure 9):

• The primary database efficiently handles both inges-
tion and real-time rollups without disruption.

• Read replicas scale query performance separately, en-
suring fast analytics even under heavy workloads.

This separation ensures that frequent queries on fresh data
don’t interfere with ingestion, making it easier to support
live monitoring, anomaly detection, interactive dashboards,
and alerting systems.

Hypertable

Rowstore

Columnstore

Tiered data

High performance
block storage

Low cost
bottomless storage

transparently query
across all data

Figure 10. Tiger Postgres transparently queries across tiered
data, spanning rowstore, columnstore, and object storage.
Recent, high-velocity data stays in fast-access storage, while
older data is compressed and tiered for cost efficiency.

5.3 Intelligent data tiering for cost-efficient
real-time analytics

Not all real-time data is equally valuable—recent data is
queried constantly, while older data is accessed less fre-
quently. Tiger Postgres extends TimescaleDB to allow auto-
matic tiering of data to cheaper bottomless object storage
(Figure 10), ensuring that hot data remains instantly accessi-
ble, while historical data is still available.

With such tiering, recent, high-velocity data stays in high-
performance storage for ultra-fast queries, while older, less
frequently accessed data is automaticallymoved to cost-efficient
object storage but remains queryable and available for build-
ing continuous aggregates.
While many systems support this concept of data cool-

ing, Tiger Postgres ensures that the data can still be queried
from the same hypertable regardless of its current location.
For real-time analytics, this means applications can ana-
lyze live data streams without worrying about storage con-
straints, while still maintaining access to long-term trends
when needed.

5.4 Cloud-native database observability
Real-time analytics doesn’t just require fast queries—it re-
quires the ability to understand why queries are fast or
slow, where resources are being used, and how performance
changes over time. That’s why Tiger Cloud is built with deep
observability features, giving developers and operators full
visibility into their database workloads.

At the core of this observability is Insights, Timescale’s
built-in query monitoring tool. Insights captures per-query
statistics from our whole fleet in real time, showing you ex-
actly how your database is behaving under load. It tracks key
metrics like execution time, planning time, number of rows
read and returned, I/O usage, and buffer cache hit rates—not
just for the database as a whole, but for each individual query.

Insights lets you do the following:

• Identify slow or resource-intensive queries instantly;
• Spot long-term performance regressions or trends;

8

• Understand query patterns and how they evolve over
time;

• See the impact of schema changes, indexes, or contin-
uous aggregates on workload performance; and

• Monitor and compare different versions of the same
query to optimize execution.

All this is surfaced through an intuitive interface, available
directly in Tiger Cloud, with no instrumentation or external
monitoring infrastructure required.
Beyond query-level visibility, Tiger Cloud also exposes

metrics around service resource consumption, compression,
continuous aggregates, and data tiering, allowing you to
track how data moves through the system—and how those
background processes impact storage and query performance.

Together, these observability features give you the insight
and control needed to operate a real-time analytics database
at scale, with confidence, clarity, and performance you can
trust.

6 Ensuring reliability and scalability
Maintaining high availability, efficient resource utilization,
and data durability is essential for real-time applications.
Tiger Cloud provides robust operational features to ensure
seamless performance under varying workloads.

• High-availability (HA) replicas: deploy multi-AZ HA
replicas to provide fault tolerance and ensure minimal
downtime. In the event of a primary node failure, repli-
cas are automatically promoted to maintain service
continuity.

• Connection pooling: optimize database connections by
efficiently managing and reusing them, reducing over-
head and improving performance for high-concurrency
applications.

• Backup and recovery: leverage continuous backups,
Point-in-Time Recovery (PITR), and automated snap-
shotting to protect against data loss. Restore data ef-
ficiently to minimize downtime in case of failures or
accidental deletions.

These operational capabilities ensure Tiger Cloud remains
reliable, scalable, and resilient, even under demanding real-
time workloads.

7 Conclusion
Real-time analytics is critical for modern applications, but
traditional databases struggle to balance high-ingest per-
formance, low-latency queries, and flexible data mutability.
Tiger Postgres extends PostgreSQL to solve this challenge,
combining automatic partitioning, hybrid row-columnar stor-
age, and intelligent compression to optimize both transac-
tional and analytical workloads.

With continuous aggregates, hyperfunctions, and advanced
query optimizations, TimescaleDB ensures sub-second queries
even on massive datasets that combine current and historic

data. Its cloud-native architecture further enhances scalabil-
ity with independent compute and storage scaling, workload
isolation, and cost-efficient data tiering—allowing applica-
tions to handle real-time and historical queries seamlessly.
For developers, this means building high-performance,

real-time analytics applications without sacrificing SQL com-
patibility, transactional guarantees, or operational simplicity.

Tiger Data delivers the best of PostgreSQL, optimized for
real-time analytics.

Last updated: Jun 17, 2025

9

	Abstract
	1 Introduction
	1.1 What is real-time analytics?
	1.2 TigerData: Real-time analytics from PostgreSQL

	2 Data model
	2.1 Efficient data partitioning
	2.2 Row-columnar storage
	2.3 Columnar storage layout
	2.4 Data mutability

	3 Query optimizations
	3.1 Skip unnecessary data
	3.2 Maximize locality
	3.3 Parallelize execution

	4 Accelerating queries with continuous aggregates
	4.1 Hyperfunctions for real-time analytics

	5 Cloud-native architecture
	5.1 Independent storage and compute scaling
	5.2 Workload isolation for real-time performance
	5.3 Intelligent data tiering for cost-efficient real-time analytics
	5.4 Cloud-native database observability

	6 Ensuring reliability and scalability
	7 Conclusion

